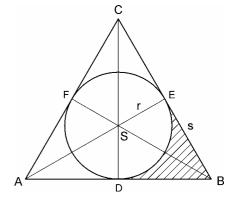

Klassen 9/10

- Aufgaben -

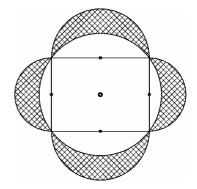
Am Ende der Aufgabensammlung finden Sie eine Formelübersicht

- 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche.
 - b) Wieviel mal größer wird der Umfang eines Kreises, wenn man die Fläche von 2 m² auf 8 m² vergrößert ?
- 2. Aus einem kreisförmigen Blech mit dem Umfang 1,50 m soll ein möglichst großes quadratisches Blechstück herausgeschnitten werden.
 - a) Berechne den Radius und die Fläche des kreisförmigen Bleches.
 - b) Berechne die Fläche des herausgeschnittenen quadratischen Bleches.
 - c) Wie hoch ist der Abfall in Prozent?
- **3.** Aus dem nebenstehenden Kreissektor wird ein Kegel geformt.

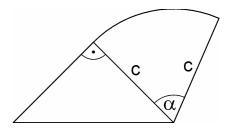
Wie groß sind Mantelfläche und Volumen?



- 4. Der mittlere Abstand der Erde von der Sonne beträgt etwa 150 Millionen km.
 - a) Wie lange benötigt das Licht von der Sonne bis zur Erde ? (c = $3,00 \cdot 10^8 \, \frac{m}{s}$)
 - b) Die Erde umläuft die Sonne annähernd auf einer Kreisbahn. Berechnen Sie ihre Geschwindigkeit auf dieser Bahn in Kilometer pro Sekunde.
 - c) Die Erdkugel dreht sich auch um ihre eigene Achse (die durch Nord- u. Südpol verläuft). Berechnen Sie die Geschwindigkeit eines Menschen am Äquator in km/h, wenn der Erdradius dort ca. 6378 km beträgt.
- **5.** Ein Zebra läuft mit sechs Kilometern in der Stunde durch die Steppe. Welche Kreisfläche könnte es in acht Stunden umrunden (gleiche Geschwindigkeit vorausgesetzt) ?
- 6. Im Fantasialand gibt es Schallplatten mit 7,2" Radius, die am äußeren Rand mit einer Relativgeschwindigkeit von 95,8 cm/s von einer Nadel abgetastet werden. Mit wie vielen Umdrehungen in der Minute wird die Platte abgespielt ? (1" = 1 Zoll = 2,54 cm)

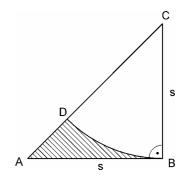

Klassen 9/10

- Aufgaben -

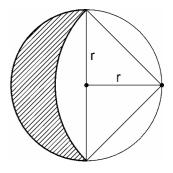

- **7.** Einem Kreis ist ein gleichseitiges Dreieck umbeschrieben.
 - a) Berechne den Kreisradius r.
 Hinweis: Die Seitenhalbierenden eines gleichseitigen Dreiecks teilen sich im Verhältnis 1: 2.
 - b) Welchen Flächeninhalt hat das schraffierte Flächenstück ? (Ausführliche Rechnung!)

- a) Licht legt in der Sekunde 3,0 · 10⁸ m zurück. Der Abstand zwischen Sonne und Mars beträgt 2,28 · 10¹¹ m.
 Wie lang ist das Licht der Sonne bis zum Mars unterwegs ?
 - b) Der Mars umkreist die Sonne. Wie lang ist der Weg einer Umkreisung und wie groß ist die Geschwindigkeit des Mars, wenn er dafür 686,7 Tage braucht?
- Wie groß ist die gerasterte Fläche, wenn die Maße des Rechteckes 16 x 12 sind ? (Die Mittelpunkte der Kreise sind angegeben)

10. Für welchen Mittelpunktswinkel α ist in der nebenstehenden Figur der Umfang des Kreissektors gerade so groß wie der Umfang des gleichschenkligrechtwinkligen Dreiecks ?

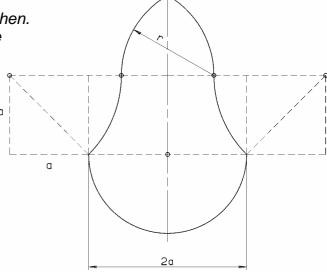


11. Berechne den Radius r eines Kreises, dessen Fläche der eines Sektors von 72° in einem Kreis mit dem Radius R gleich ist.


Klassen 9/10

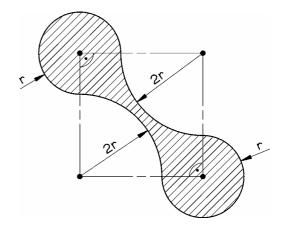
- Aufgaben -

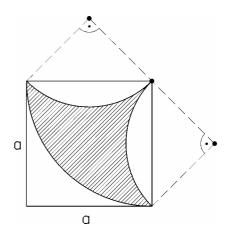
 12. Gegeben ist das nebenstehende gleichschenklig rechtwinklige Dreieck mit dem Schenkel s.
 Berechne den Umfang und die Fläche der schraffierten Figur in Abhängigkeit von s.



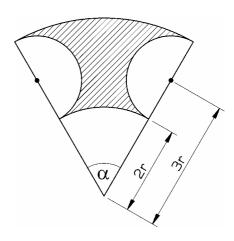
13. Berechne Inhalt und Umfang der in nebenstehender Abbildung schraffierten Fläche!

- **14.** Der Scheibenwischer eines Autos dreht sich um jeweils 105°. Das Wischerblatt ist 50 cm lang, sein inneres Ende 15 cm vom Drehpunkt entfernt. (Skizze!) Berechne übersichtlich,
 - a) wie groß (in m²) die Fläche ist, die gewischt wird und
 - b) wie lang (in m) der Rand der gewischten Fläche ist!
- **15.** Berechne den Flächeninhalt der abgebildeten symmetrischen Figur in Abhängigkeit von a.

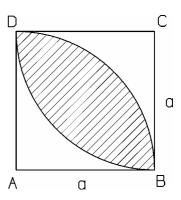

(Zerlege dazu die Figur in sinnvolle Teilflächen. Die eingekreisten Punkte sind Mittelpunkte von Kreisbögen.)

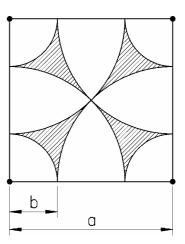

Klassen 9/10

- Aufgaben -


- 16. Berechne den Mittelpunktswinkel α eines Kreisausschnitts (Radius r), dessen Flächeninhalt gleich dem Flächeninhalt eines gleichseitigen Dreiecks mit der Seitenlänge r ist. Gib α auch im Bogenmaß an.
- **17.** Berechne den Flächeninhalt und den Umfang der schraffierten Fläche.

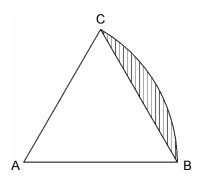
18. Berechne den Flächeninhalt und den Umfang der schraffierten Fläche.


19. Berechne den Flächeninhalt und den Umfang der schraffierten Fläche für $\alpha = 60^{\circ}$.

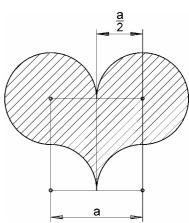

Klassen 9/10

- Aufgaben -

20. Das Quadrat ABCD habe die Kantenlänge a. Wie viel Prozent der Fläche des Quadrates sind schraffiert?

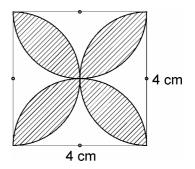


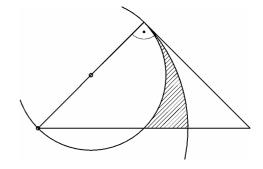
- **21.** a) Berechne den Flächeninhalt der schraffierten Fläche in Abhängigkeit von a und b.
 - b) Berechne b für a = 5 cm.
 - c) Berechne mit den Werten aus (2) den Flächeninhalt der schraffierten Fläche.



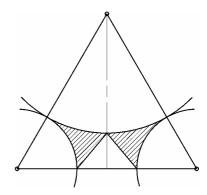
22. Gegeben ist ein gleichseitiges Dreieck ABC mit der Seitenlänge a = 5 cm und ein Bogen BC. (siehe Zeichnung)

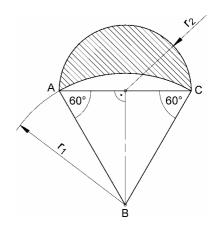
Berechne den Flächeninhalt der schraffierten Fläche.


- **23.** Berechne den Flächeninhalt der schraffierten Figur
 - a) $f \ddot{u} r a = 6 cm$
 - b) allgemein in Abhängigkeit von a. Vereinfache möglichst weit ohne Taschenrechner.

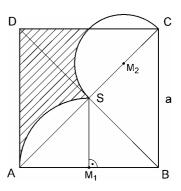

Klassen 9/10

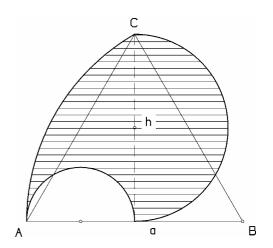
- Aufgaben -


24. Berechne Umfang und Flächeninhalt der schraffiert gekennzeichneten Figur:


25. Berechne die schraffierte Fläche im gleichschenklig-rechtwinkligen Dreieck mit der Hypotenuse 2b.

26. Berechne die im gleichseitigen Dreieck schraffierte Fläche, wenn der Radius eines kleinen Kreises ein Drittel der Seitenlänge a des Dreiecks beträgt.

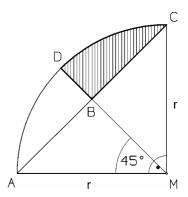

27. Wie lang muß die Strecke [AC] sein, damit der Flächeninhalt der schraffierten Figur 10 cm² beträgt? (auf zwei Stellen nach dem Komma runden)


Klassen 9/10

- Aufgaben -

28. Gegeben ist ein Quadrat mit der Seitenlänge a. Berechne die Fläche und den Umfang der schraffierten Figur in Abhängigkeit von a.

- 29. In nebenstehender Figur ist ein gleichseitiges Dreieck ABC mit der Seitenlänge a gegeben.
 - a) Bestimme die Höhe h im gleichseitigen Dreieck.
 - b) Berechne in Abhängigkeit von a den Umfang der schraffierten Figur.
 - Berechne in Abhängigkeit von a den Flächeninhalt der schraffierten Figur.

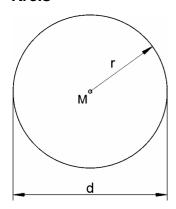


- 30. Das gleichschenklig rechtwinklige Dreieck ABC hat die Kathetenlänge BC = a. Der Punkt M halbiert [BC] und ist der Mittelpunkt eines Kreisbogens BC, der [AB] in N schneidet. Dieser Punkt N ist der Mittelpunkt des Kreisbogens AB. Berechnen Sie jeweils in Abhängigkeit von a
 - a) den Umfang
 - b) den Flächeninhalt des schraffierten Flächenstücks.

- **31.** Gegeben sei die nebenstehende Figur. Berechne in Abhängigkeit von r:
 - a) den Flächeninhalt der schraffierten Fläche.
 - b) den Umfang U der schraffierten Fläche.

Die Ergebnisse sind soweit wie möglich zu vereinfachen.

1. **Definitionen**


Es werden folgende Symbole verwendet:

- Kreisradius
- Kreisdurchmesser
- Sehnenlänge
- Segmenthöhe

- Sektorwinkel in Grad
- Sektorwinkel in rad

2. **Formeln**

Kreis

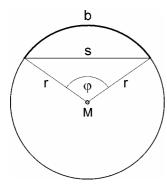
Fläche

$$A = r^2 \pi$$

$$A = \frac{d^2 \pi}{4}$$

Umfang

$$U = 2\pi i$$


$$U=d\,\pi$$

Kreisradius

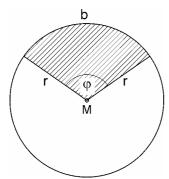
$$r = \frac{U}{2\pi}$$

$$r = \sqrt{\frac{A}{\pi}}$$

Bogenlänge / Sehnenlänge

Bogenlänge

$$b = 2 r \pi \frac{\phi}{360^{\circ}} \qquad s = 2 r \sin \frac{\phi}{2}$$

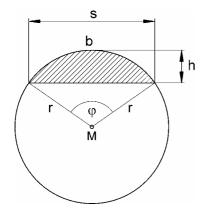

$$b=r\,\pi\,\frac{\phi}{180^\circ}$$

$$b=U\,\frac{\phi}{360^\circ}$$

Sehnenlänge

$$s=2\,r\,sin\frac{\phi}{2}$$

Fläche


$$A=r^2\pi\,\frac{\phi}{360^\circ}$$

$$A = \frac{b r}{2}$$

Formelsammlung

Kreis, - Sektor, - Segment (Fläche, Umfang, Bogenlänge)

Kreisabschnitt - Kreissegment

Fläche

$$A = \frac{r^2}{2} \left(\pi \frac{\phi}{180^{\circ}} - \sin \phi \right)$$

$$A = \frac{r^2}{2} \left(\pi \frac{\phi}{180^{\circ}} - \sin \phi \right)$$

$$A = \frac{1}{2} \left(r^2 \pi \frac{\phi}{180^{\circ}} - s(r - h) \right)$$

$$r = \frac{s}{2 \sin \frac{\phi}{2}}$$

$$r = \frac{h}{2} + \frac{s^2}{8h}$$

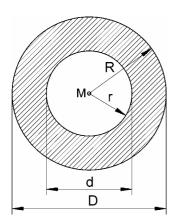
$$A = \frac{1}{2} \Big[b r - s (r - h) \Big]$$

Kreisradius

$$r = \frac{s}{2\sin\frac{\phi}{2}}$$

$$r=\frac{h}{2}+\frac{s^2}{8\,h}$$

Sehnenlänge


$$s=2\,r\,sin\frac{\phi}{2}$$

$$s=2\sqrt{\,h\big(2r-h\big)}$$

Segmenthöhe

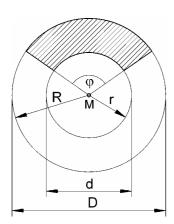
$$h = r - \frac{1}{2} \sqrt{4r^2 - s^2}$$

Kreisring

Fläche

$$A = \pi \left(R^2 - r^2 \right)$$

$$A = \frac{\pi}{4} \Big(D^2 - d^2 \Big)$$


Außendurchmesser

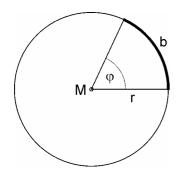
$$D = \sqrt{\frac{4 \text{ A}}{\pi} + d^2}$$

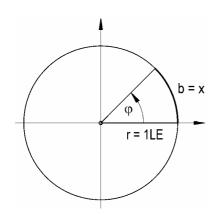
Innendurchmesser

$$d = \sqrt{D^2 - \frac{4 A}{\pi}}$$

Kreisringausschnitt

Fläche


$$A=\pi \Big(R^2-r^2\Big)\frac{\phi}{360^\circ}$$


$$A = \frac{\pi}{4} \Big(D^2 - d^2 \Big) \frac{\phi}{360^\circ}$$

Formelsammlung

Kreis, - Sektor, - Segment (Fläche, Umfang, Bogenlänge)

Umrechnung / Definition Gradmaß (°) ⇔ Bogenmaß (rad)

Die Länge des Kreisbogens ist: $b = 2 r \pi \frac{\phi}{360^{\circ}}$

Umgeformt ergibt sich: $\frac{b}{r} = \frac{\pi \phi}{180^{\circ}}$

Das zu einem Winkel ϕ gehörende Verhältnis b : r, nennt man Bogenmaß x des Winkels ϕ

$$x = \frac{b}{r} = \frac{\pi \phi}{180^{\circ}}$$
 mit der Einheit 1 Radiant (1 rad)

Hat der Kreisradius r die Länge 1 (Einheitskreis),so ist die Länge des Kreisbogens b das Bogenmaß x des Winkels $\boldsymbol{\phi}$

$$x = b$$
 (für $r = 1LE$)

Wird ein Winkel im Bogenmaß angegeben, so wird dieser Winkel mit arc ϕ oder x bezeichnet.

Umrechnungen:

$$\phi^o = \frac{x \cdot 180^\circ}{\pi} \approx 57,29578^\circ \cdot x$$

$$x = \frac{\phi^{\circ} \cdot \pi}{180^{\circ}} \approx 0,01745 \cdot \phi^{\circ}$$

$$1 \, rad = \frac{180^{\circ}}{\pi} \approx 57,29578^{\circ}$$

$$1^{\circ} = \frac{\pi}{180^{\circ}} \text{rad} \approx 0,01745 \text{ rad}$$